FFmpeg  4.4.5
mpeg4videoenc.c
Go to the documentation of this file.
1 /*
2  * MPEG-4 encoder
3  * Copyright (c) 2000,2001 Fabrice Bellard
4  * Copyright (c) 2002-2010 Michael Niedermayer <michaelni@gmx.at>
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 #include "libavutil/attributes.h"
24 #include "libavutil/log.h"
25 #include "libavutil/opt.h"
26 #include "mpegutils.h"
27 #include "mpegvideo.h"
28 #include "h263.h"
29 #include "mpeg4video.h"
30 #include "profiles.h"
31 
32 /* The uni_DCtab_* tables below contain unified bits+length tables to encode DC
33  * differences in MPEG-4. Unified in the sense that the specification specifies
34  * this encoding in several steps. */
37 static uint16_t uni_DCtab_lum_bits[512];
38 static uint16_t uni_DCtab_chrom_bits[512];
39 
40 /* Unified encoding tables for run length encoding of coefficients.
41  * Unified in the sense that the specification specifies the encoding in several steps. */
42 static uint32_t uni_mpeg4_intra_rl_bits[64 * 64 * 2 * 2];
43 static uint8_t uni_mpeg4_intra_rl_len[64 * 64 * 2 * 2];
44 static uint32_t uni_mpeg4_inter_rl_bits[64 * 64 * 2 * 2];
45 static uint8_t uni_mpeg4_inter_rl_len[64 * 64 * 2 * 2];
46 
47 //#define UNI_MPEG4_ENC_INDEX(last, run, level) ((last) * 128 + (run) * 256 + (level))
48 //#define UNI_MPEG4_ENC_INDEX(last, run, level) ((last) * 128 * 64 + (run) + (level) * 64)
49 #define UNI_MPEG4_ENC_INDEX(last, run, level) ((last) * 128 * 64 + (run) * 128 + (level))
50 
51 /* MPEG-4
52  * inter
53  * max level: 24/6
54  * max run: 53/63
55  *
56  * intra
57  * max level: 53/16
58  * max run: 29/41
59  */
60 
61 /**
62  * Return the number of bits that encoding the 8x8 block in block would need.
63  * @param[in] block_last_index last index in scantable order that refers to a non zero element in block.
64  */
65 static inline int get_block_rate(MpegEncContext *s, int16_t block[64],
66  int block_last_index, uint8_t scantable[64])
67 {
68  int last = 0;
69  int j;
70  int rate = 0;
71 
72  for (j = 1; j <= block_last_index; j++) {
73  const int index = scantable[j];
74  int level = block[index];
75  if (level) {
76  level += 64;
77  if ((level & (~127)) == 0) {
78  if (j < block_last_index)
79  rate += s->intra_ac_vlc_length[UNI_AC_ENC_INDEX(j - last - 1, level)];
80  else
81  rate += s->intra_ac_vlc_last_length[UNI_AC_ENC_INDEX(j - last - 1, level)];
82  } else
83  rate += s->ac_esc_length;
84 
85  last = j;
86  }
87  }
88 
89  return rate;
90 }
91 
92 /**
93  * Restore the ac coefficients in block that have been changed by decide_ac_pred().
94  * This function also restores s->block_last_index.
95  * @param[in,out] block MB coefficients, these will be restored
96  * @param[in] dir ac prediction direction for each 8x8 block
97  * @param[out] st scantable for each 8x8 block
98  * @param[in] zigzag_last_index index referring to the last non zero coefficient in zigzag order
99  */
100 static inline void restore_ac_coeffs(MpegEncContext *s, int16_t block[6][64],
101  const int dir[6], uint8_t *st[6],
102  const int zigzag_last_index[6])
103 {
104  int i, n;
105  memcpy(s->block_last_index, zigzag_last_index, sizeof(int) * 6);
106 
107  for (n = 0; n < 6; n++) {
108  int16_t *ac_val = &s->ac_val[0][0][0] + s->block_index[n] * 16;
109 
110  st[n] = s->intra_scantable.permutated;
111  if (dir[n]) {
112  /* top prediction */
113  for (i = 1; i < 8; i++)
114  block[n][s->idsp.idct_permutation[i]] = ac_val[i + 8];
115  } else {
116  /* left prediction */
117  for (i = 1; i < 8; i++)
118  block[n][s->idsp.idct_permutation[i << 3]] = ac_val[i];
119  }
120  }
121 }
122 
123 /**
124  * Return the optimal value (0 or 1) for the ac_pred element for the given MB in MPEG-4.
125  * This function will also update s->block_last_index and s->ac_val.
126  * @param[in,out] block MB coefficients, these will be updated if 1 is returned
127  * @param[in] dir ac prediction direction for each 8x8 block
128  * @param[out] st scantable for each 8x8 block
129  * @param[out] zigzag_last_index index referring to the last non zero coefficient in zigzag order
130  */
131 static inline int decide_ac_pred(MpegEncContext *s, int16_t block[6][64],
132  const int dir[6], uint8_t *st[6],
133  int zigzag_last_index[6])
134 {
135  int score = 0;
136  int i, n;
137  int8_t *const qscale_table = s->current_picture.qscale_table;
138 
139  memcpy(zigzag_last_index, s->block_last_index, sizeof(int) * 6);
140 
141  for (n = 0; n < 6; n++) {
142  int16_t *ac_val, *ac_val1;
143 
144  score -= get_block_rate(s, block[n], s->block_last_index[n],
145  s->intra_scantable.permutated);
146 
147  ac_val = &s->ac_val[0][0][0] + s->block_index[n] * 16;
148  ac_val1 = ac_val;
149  if (dir[n]) {
150  const int xy = s->mb_x + s->mb_y * s->mb_stride - s->mb_stride;
151  /* top prediction */
152  ac_val -= s->block_wrap[n] * 16;
153  if (s->mb_y == 0 || s->qscale == qscale_table[xy] || n == 2 || n == 3) {
154  /* same qscale */
155  for (i = 1; i < 8; i++) {
156  const int level = block[n][s->idsp.idct_permutation[i]];
157  block[n][s->idsp.idct_permutation[i]] = level - ac_val[i + 8];
158  ac_val1[i] = block[n][s->idsp.idct_permutation[i << 3]];
159  ac_val1[i + 8] = level;
160  }
161  } else {
162  /* different qscale, we must rescale */
163  for (i = 1; i < 8; i++) {
164  const int level = block[n][s->idsp.idct_permutation[i]];
165  block[n][s->idsp.idct_permutation[i]] = level - ROUNDED_DIV(ac_val[i + 8] * qscale_table[xy], s->qscale);
166  ac_val1[i] = block[n][s->idsp.idct_permutation[i << 3]];
167  ac_val1[i + 8] = level;
168  }
169  }
170  st[n] = s->intra_h_scantable.permutated;
171  } else {
172  const int xy = s->mb_x - 1 + s->mb_y * s->mb_stride;
173  /* left prediction */
174  ac_val -= 16;
175  if (s->mb_x == 0 || s->qscale == qscale_table[xy] || n == 1 || n == 3) {
176  /* same qscale */
177  for (i = 1; i < 8; i++) {
178  const int level = block[n][s->idsp.idct_permutation[i << 3]];
179  block[n][s->idsp.idct_permutation[i << 3]] = level - ac_val[i];
180  ac_val1[i] = level;
181  ac_val1[i + 8] = block[n][s->idsp.idct_permutation[i]];
182  }
183  } else {
184  /* different qscale, we must rescale */
185  for (i = 1; i < 8; i++) {
186  const int level = block[n][s->idsp.idct_permutation[i << 3]];
187  block[n][s->idsp.idct_permutation[i << 3]] = level - ROUNDED_DIV(ac_val[i] * qscale_table[xy], s->qscale);
188  ac_val1[i] = level;
189  ac_val1[i + 8] = block[n][s->idsp.idct_permutation[i]];
190  }
191  }
192  st[n] = s->intra_v_scantable.permutated;
193  }
194 
195  for (i = 63; i > 0; i--) // FIXME optimize
196  if (block[n][st[n][i]])
197  break;
198  s->block_last_index[n] = i;
199 
200  score += get_block_rate(s, block[n], s->block_last_index[n], st[n]);
201  }
202 
203  if (score < 0) {
204  return 1;
205  } else {
206  restore_ac_coeffs(s, block, dir, st, zigzag_last_index);
207  return 0;
208  }
209 }
210 
211 /**
212  * modify mb_type & qscale so that encoding is actually possible in MPEG-4
213  */
215 {
216  int i;
217  int8_t *const qscale_table = s->current_picture.qscale_table;
218 
220 
221  if (s->pict_type == AV_PICTURE_TYPE_B) {
222  int odd = 0;
223  /* ok, come on, this isn't funny anymore, there's more code for
224  * handling this MPEG-4 mess than for the actual adaptive quantization */
225 
226  for (i = 0; i < s->mb_num; i++) {
227  int mb_xy = s->mb_index2xy[i];
228  odd += qscale_table[mb_xy] & 1;
229  }
230 
231  if (2 * odd > s->mb_num)
232  odd = 1;
233  else
234  odd = 0;
235 
236  for (i = 0; i < s->mb_num; i++) {
237  int mb_xy = s->mb_index2xy[i];
238  if ((qscale_table[mb_xy] & 1) != odd)
239  qscale_table[mb_xy]++;
240  if (qscale_table[mb_xy] > 31)
241  qscale_table[mb_xy] = 31;
242  }
243 
244  for (i = 1; i < s->mb_num; i++) {
245  int mb_xy = s->mb_index2xy[i];
246  if (qscale_table[mb_xy] != qscale_table[s->mb_index2xy[i - 1]] &&
247  (s->mb_type[mb_xy] & CANDIDATE_MB_TYPE_DIRECT)) {
248  s->mb_type[mb_xy] |= CANDIDATE_MB_TYPE_BIDIR;
249  }
250  }
251  }
252 }
253 
254 /**
255  * Encode the dc value.
256  * @param n block index (0-3 are luma, 4-5 are chroma)
257  */
258 static inline void mpeg4_encode_dc(PutBitContext *s, int level, int n)
259 {
260  /* DC will overflow if level is outside the [-255,255] range. */
261  level += 256;
262  if (n < 4) {
263  /* luminance */
265  } else {
266  /* chrominance */
268  }
269 }
270 
271 static inline int mpeg4_get_dc_length(int level, int n)
272 {
273  if (n < 4)
274  return uni_DCtab_lum_len[level + 256];
275  else
276  return uni_DCtab_chrom_len[level + 256];
277 }
278 
279 /**
280  * Encode an 8x8 block.
281  * @param n block index (0-3 are luma, 4-5 are chroma)
282  */
283 static inline void mpeg4_encode_block(MpegEncContext *s,
284  int16_t *block, int n, int intra_dc,
285  uint8_t *scan_table, PutBitContext *dc_pb,
286  PutBitContext *ac_pb)
287 {
288  int i, last_non_zero;
289  uint32_t *bits_tab;
290  uint8_t *len_tab;
291  const int last_index = s->block_last_index[n];
292 
293  if (s->mb_intra) { // Note gcc (3.2.1 at least) will optimize this away
294  /* MPEG-4 based DC predictor */
295  mpeg4_encode_dc(dc_pb, intra_dc, n);
296  if (last_index < 1)
297  return;
298  i = 1;
299  bits_tab = uni_mpeg4_intra_rl_bits;
300  len_tab = uni_mpeg4_intra_rl_len;
301  } else {
302  if (last_index < 0)
303  return;
304  i = 0;
305  bits_tab = uni_mpeg4_inter_rl_bits;
306  len_tab = uni_mpeg4_inter_rl_len;
307  }
308 
309  /* AC coefs */
310  last_non_zero = i - 1;
311  for (; i < last_index; i++) {
312  int level = block[scan_table[i]];
313  if (level) {
314  int run = i - last_non_zero - 1;
315  level += 64;
316  if ((level & (~127)) == 0) {
317  const int index = UNI_MPEG4_ENC_INDEX(0, run, level);
318  put_bits(ac_pb, len_tab[index], bits_tab[index]);
319  } else { // ESC3
320  put_bits(ac_pb,
321  7 + 2 + 1 + 6 + 1 + 12 + 1,
322  (3 << 23) + (3 << 21) + (0 << 20) + (run << 14) +
323  (1 << 13) + (((level - 64) & 0xfff) << 1) + 1);
324  }
325  last_non_zero = i;
326  }
327  }
328  /* if (i <= last_index) */ {
329  int level = block[scan_table[i]];
330  int run = i - last_non_zero - 1;
331  level += 64;
332  if ((level & (~127)) == 0) {
333  const int index = UNI_MPEG4_ENC_INDEX(1, run, level);
334  put_bits(ac_pb, len_tab[index], bits_tab[index]);
335  } else { // ESC3
336  put_bits(ac_pb,
337  7 + 2 + 1 + 6 + 1 + 12 + 1,
338  (3 << 23) + (3 << 21) + (1 << 20) + (run << 14) +
339  (1 << 13) + (((level - 64) & 0xfff) << 1) + 1);
340  }
341  }
342 }
343 
345  int16_t *block, int n,
346  int intra_dc, uint8_t *scan_table)
347 {
348  int i, last_non_zero;
349  uint8_t *len_tab;
350  const int last_index = s->block_last_index[n];
351  int len = 0;
352 
353  if (s->mb_intra) { // Note gcc (3.2.1 at least) will optimize this away
354  /* MPEG-4 based DC predictor */
355  len += mpeg4_get_dc_length(intra_dc, n);
356  if (last_index < 1)
357  return len;
358  i = 1;
359  len_tab = uni_mpeg4_intra_rl_len;
360  } else {
361  if (last_index < 0)
362  return 0;
363  i = 0;
364  len_tab = uni_mpeg4_inter_rl_len;
365  }
366 
367  /* AC coefs */
368  last_non_zero = i - 1;
369  for (; i < last_index; i++) {
370  int level = block[scan_table[i]];
371  if (level) {
372  int run = i - last_non_zero - 1;
373  level += 64;
374  if ((level & (~127)) == 0) {
375  const int index = UNI_MPEG4_ENC_INDEX(0, run, level);
376  len += len_tab[index];
377  } else { // ESC3
378  len += 7 + 2 + 1 + 6 + 1 + 12 + 1;
379  }
380  last_non_zero = i;
381  }
382  }
383  /* if (i <= last_index) */ {
384  int level = block[scan_table[i]];
385  int run = i - last_non_zero - 1;
386  level += 64;
387  if ((level & (~127)) == 0) {
388  const int index = UNI_MPEG4_ENC_INDEX(1, run, level);
389  len += len_tab[index];
390  } else { // ESC3
391  len += 7 + 2 + 1 + 6 + 1 + 12 + 1;
392  }
393  }
394 
395  return len;
396 }
397 
398 static inline void mpeg4_encode_blocks(MpegEncContext *s, int16_t block[6][64],
399  int intra_dc[6], uint8_t **scan_table,
400  PutBitContext *dc_pb,
401  PutBitContext *ac_pb)
402 {
403  int i;
404 
405  if (scan_table) {
406  if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT) {
407  for (i = 0; i < 6; i++)
408  skip_put_bits(&s->pb,
410  intra_dc[i], scan_table[i]));
411  } else {
412  /* encode each block */
413  for (i = 0; i < 6; i++)
415  intra_dc[i], scan_table[i], dc_pb, ac_pb);
416  }
417  } else {
418  if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT) {
419  for (i = 0; i < 6; i++)
420  skip_put_bits(&s->pb,
422  s->intra_scantable.permutated));
423  } else {
424  /* encode each block */
425  for (i = 0; i < 6; i++)
426  mpeg4_encode_block(s, block[i], i, 0,
427  s->intra_scantable.permutated, dc_pb, ac_pb);
428  }
429  }
430 }
431 
432 static inline int get_b_cbp(MpegEncContext *s, int16_t block[6][64],
433  int motion_x, int motion_y, int mb_type)
434 {
435  int cbp = 0, i;
436 
437  if (s->mpv_flags & FF_MPV_FLAG_CBP_RD) {
438  int score = 0;
439  const int lambda = s->lambda2 >> (FF_LAMBDA_SHIFT - 6);
440 
441  for (i = 0; i < 6; i++) {
442  if (s->coded_score[i] < 0) {
443  score += s->coded_score[i];
444  cbp |= 1 << (5 - i);
445  }
446  }
447 
448  if (cbp) {
449  int zero_score = -6;
450  if ((motion_x | motion_y | s->dquant | mb_type) == 0)
451  zero_score -= 4; // 2 * MV + mb_type + cbp bit
452 
453  zero_score *= lambda;
454  if (zero_score <= score)
455  cbp = 0;
456  }
457 
458  for (i = 0; i < 6; i++) {
459  if (s->block_last_index[i] >= 0 && ((cbp >> (5 - i)) & 1) == 0) {
460  s->block_last_index[i] = -1;
461  s->bdsp.clear_block(s->block[i]);
462  }
463  }
464  } else {
465  for (i = 0; i < 6; i++) {
466  if (s->block_last_index[i] >= 0)
467  cbp |= 1 << (5 - i);
468  }
469  }
470  return cbp;
471 }
472 
473 // FIXME this is duplicated to h263.c
474 static const int dquant_code[5] = { 1, 0, 9, 2, 3 };
475 
476 void ff_mpeg4_encode_mb(MpegEncContext *s, int16_t block[6][64],
477  int motion_x, int motion_y)
478 {
479  int cbpc, cbpy, pred_x, pred_y;
480  PutBitContext *const pb2 = s->data_partitioning ? &s->pb2 : &s->pb;
481  PutBitContext *const tex_pb = s->data_partitioning && s->pict_type != AV_PICTURE_TYPE_B ? &s->tex_pb : &s->pb;
482  PutBitContext *const dc_pb = s->data_partitioning && s->pict_type != AV_PICTURE_TYPE_I ? &s->pb2 : &s->pb;
483  const int interleaved_stats = (s->avctx->flags & AV_CODEC_FLAG_PASS1) && !s->data_partitioning ? 1 : 0;
484 
485  if (!s->mb_intra) {
486  int i, cbp;
487 
488  if (s->pict_type == AV_PICTURE_TYPE_B) {
489  /* convert from mv_dir to type */
490  static const int mb_type_table[8] = { -1, 3, 2, 1, -1, -1, -1, 0 };
491  int mb_type = mb_type_table[s->mv_dir];
492 
493  if (s->mb_x == 0) {
494  for (i = 0; i < 2; i++)
495  s->last_mv[i][0][0] =
496  s->last_mv[i][0][1] =
497  s->last_mv[i][1][0] =
498  s->last_mv[i][1][1] = 0;
499  }
500 
501  av_assert2(s->dquant >= -2 && s->dquant <= 2);
502  av_assert2((s->dquant & 1) == 0);
503  av_assert2(mb_type >= 0);
504 
505  /* nothing to do if this MB was skipped in the next P-frame */
506  if (s->next_picture.mbskip_table[s->mb_y * s->mb_stride + s->mb_x]) { // FIXME avoid DCT & ...
507  s->skip_count++;
508  s->mv[0][0][0] =
509  s->mv[0][0][1] =
510  s->mv[1][0][0] =
511  s->mv[1][0][1] = 0;
512  s->mv_dir = MV_DIR_FORWARD; // doesn't matter
513  s->qscale -= s->dquant;
514 // s->mb_skipped = 1;
515 
516  return;
517  }
518 
519  cbp = get_b_cbp(s, block, motion_x, motion_y, mb_type);
520 
521  if ((cbp | motion_x | motion_y | mb_type) == 0) {
522  /* direct MB with MV={0,0} */
523  av_assert2(s->dquant == 0);
524 
525  put_bits(&s->pb, 1, 1); /* mb not coded modb1=1 */
526 
527  if (interleaved_stats) {
528  s->misc_bits++;
529  s->last_bits++;
530  }
531  s->skip_count++;
532  return;
533  }
534 
535  put_bits(&s->pb, 1, 0); /* mb coded modb1=0 */
536  put_bits(&s->pb, 1, cbp ? 0 : 1); /* modb2 */ // FIXME merge
537  put_bits(&s->pb, mb_type + 1, 1); // this table is so simple that we don't need it :)
538  if (cbp)
539  put_bits(&s->pb, 6, cbp);
540 
541  if (cbp && mb_type) {
542  if (s->dquant)
543  put_bits(&s->pb, 2, (s->dquant >> 2) + 3);
544  else
545  put_bits(&s->pb, 1, 0);
546  } else
547  s->qscale -= s->dquant;
548 
549  if (!s->progressive_sequence) {
550  if (cbp)
551  put_bits(&s->pb, 1, s->interlaced_dct);
552  if (mb_type) // not direct mode
553  put_bits(&s->pb, 1, s->mv_type == MV_TYPE_FIELD);
554  }
555 
556  if (interleaved_stats)
557  s->misc_bits += get_bits_diff(s);
558 
559  if (!mb_type) {
560  av_assert2(s->mv_dir & MV_DIRECT);
561  ff_h263_encode_motion_vector(s, motion_x, motion_y, 1);
562  s->b_count++;
563  s->f_count++;
564  } else {
565  av_assert2(mb_type > 0 && mb_type < 4);
566  if (s->mv_type != MV_TYPE_FIELD) {
567  if (s->mv_dir & MV_DIR_FORWARD) {
569  s->mv[0][0][0] - s->last_mv[0][0][0],
570  s->mv[0][0][1] - s->last_mv[0][0][1],
571  s->f_code);
572  s->last_mv[0][0][0] =
573  s->last_mv[0][1][0] = s->mv[0][0][0];
574  s->last_mv[0][0][1] =
575  s->last_mv[0][1][1] = s->mv[0][0][1];
576  s->f_count++;
577  }
578  if (s->mv_dir & MV_DIR_BACKWARD) {
580  s->mv[1][0][0] - s->last_mv[1][0][0],
581  s->mv[1][0][1] - s->last_mv[1][0][1],
582  s->b_code);
583  s->last_mv[1][0][0] =
584  s->last_mv[1][1][0] = s->mv[1][0][0];
585  s->last_mv[1][0][1] =
586  s->last_mv[1][1][1] = s->mv[1][0][1];
587  s->b_count++;
588  }
589  } else {
590  if (s->mv_dir & MV_DIR_FORWARD) {
591  put_bits(&s->pb, 1, s->field_select[0][0]);
592  put_bits(&s->pb, 1, s->field_select[0][1]);
593  }
594  if (s->mv_dir & MV_DIR_BACKWARD) {
595  put_bits(&s->pb, 1, s->field_select[1][0]);
596  put_bits(&s->pb, 1, s->field_select[1][1]);
597  }
598  if (s->mv_dir & MV_DIR_FORWARD) {
599  for (i = 0; i < 2; i++) {
601  s->mv[0][i][0] - s->last_mv[0][i][0],
602  s->mv[0][i][1] - s->last_mv[0][i][1] / 2,
603  s->f_code);
604  s->last_mv[0][i][0] = s->mv[0][i][0];
605  s->last_mv[0][i][1] = s->mv[0][i][1] * 2;
606  }
607  s->f_count++;
608  }
609  if (s->mv_dir & MV_DIR_BACKWARD) {
610  for (i = 0; i < 2; i++) {
612  s->mv[1][i][0] - s->last_mv[1][i][0],
613  s->mv[1][i][1] - s->last_mv[1][i][1] / 2,
614  s->b_code);
615  s->last_mv[1][i][0] = s->mv[1][i][0];
616  s->last_mv[1][i][1] = s->mv[1][i][1] * 2;
617  }
618  s->b_count++;
619  }
620  }
621  }
622 
623  if (interleaved_stats)
624  s->mv_bits += get_bits_diff(s);
625 
627 
628  if (interleaved_stats)
629  s->p_tex_bits += get_bits_diff(s);
630  } else { /* s->pict_type==AV_PICTURE_TYPE_B */
631  cbp = get_p_cbp(s, block, motion_x, motion_y);
632 
633  if ((cbp | motion_x | motion_y | s->dquant) == 0 &&
634  s->mv_type == MV_TYPE_16X16) {
635  /* Check if the B-frames can skip it too, as we must skip it
636  * if we skip here why didn't they just compress
637  * the skip-mb bits instead of reusing them ?! */
638  if (s->max_b_frames > 0) {
639  int i;
640  int x, y, offset;
641  uint8_t *p_pic;
642 
643  x = s->mb_x * 16;
644  y = s->mb_y * 16;
645 
646  offset = x + y * s->linesize;
647  p_pic = s->new_picture.f->data[0] + offset;
648 
649  s->mb_skipped = 1;
650  for (i = 0; i < s->max_b_frames; i++) {
651  uint8_t *b_pic;
652  int diff;
653  Picture *pic = s->reordered_input_picture[i + 1];
654 
655  if (!pic || pic->f->pict_type != AV_PICTURE_TYPE_B)
656  break;
657 
658  b_pic = pic->f->data[0] + offset;
659  if (!pic->shared)
660  b_pic += INPLACE_OFFSET;
661 
662  if (x + 16 > s->width || y + 16 > s->height) {
663  int x1, y1;
664  int xe = FFMIN(16, s->width - x);
665  int ye = FFMIN(16, s->height - y);
666  diff = 0;
667  for (y1 = 0; y1 < ye; y1++) {
668  for (x1 = 0; x1 < xe; x1++) {
669  diff += FFABS(p_pic[x1 + y1 * s->linesize] - b_pic[x1 + y1 * s->linesize]);
670  }
671  }
672  diff = diff * 256 / (xe * ye);
673  } else {
674  diff = s->mecc.sad[0](NULL, p_pic, b_pic, s->linesize, 16);
675  }
676  if (diff > s->qscale * 70) { // FIXME check that 70 is optimal
677  s->mb_skipped = 0;
678  break;
679  }
680  }
681  } else
682  s->mb_skipped = 1;
683 
684  if (s->mb_skipped == 1) {
685  /* skip macroblock */
686  put_bits(&s->pb, 1, 1);
687 
688  if (interleaved_stats) {
689  s->misc_bits++;
690  s->last_bits++;
691  }
692  s->skip_count++;
693 
694  return;
695  }
696  }
697 
698  put_bits(&s->pb, 1, 0); /* mb coded */
699  cbpc = cbp & 3;
700  cbpy = cbp >> 2;
701  cbpy ^= 0xf;
702  if (s->mv_type == MV_TYPE_16X16) {
703  if (s->dquant)
704  cbpc += 8;
705  put_bits(&s->pb,
708 
709  put_bits(pb2, ff_h263_cbpy_tab[cbpy][1], ff_h263_cbpy_tab[cbpy][0]);
710  if (s->dquant)
711  put_bits(pb2, 2, dquant_code[s->dquant + 2]);
712 
713  if (!s->progressive_sequence) {
714  if (cbp)
715  put_bits(pb2, 1, s->interlaced_dct);
716  put_bits(pb2, 1, 0);
717  }
718 
719  if (interleaved_stats)
720  s->misc_bits += get_bits_diff(s);
721 
722  /* motion vectors: 16x16 mode */
723  ff_h263_pred_motion(s, 0, 0, &pred_x, &pred_y);
724 
726  motion_x - pred_x,
727  motion_y - pred_y,
728  s->f_code);
729  } else if (s->mv_type == MV_TYPE_FIELD) {
730  if (s->dquant)
731  cbpc += 8;
732  put_bits(&s->pb,
735 
736  put_bits(pb2, ff_h263_cbpy_tab[cbpy][1], ff_h263_cbpy_tab[cbpy][0]);
737  if (s->dquant)
738  put_bits(pb2, 2, dquant_code[s->dquant + 2]);
739 
740  av_assert2(!s->progressive_sequence);
741  if (cbp)
742  put_bits(pb2, 1, s->interlaced_dct);
743  put_bits(pb2, 1, 1);
744 
745  if (interleaved_stats)
746  s->misc_bits += get_bits_diff(s);
747 
748  /* motion vectors: 16x8 interlaced mode */
749  ff_h263_pred_motion(s, 0, 0, &pred_x, &pred_y);
750  pred_y /= 2;
751 
752  put_bits(&s->pb, 1, s->field_select[0][0]);
753  put_bits(&s->pb, 1, s->field_select[0][1]);
754 
756  s->mv[0][0][0] - pred_x,
757  s->mv[0][0][1] - pred_y,
758  s->f_code);
760  s->mv[0][1][0] - pred_x,
761  s->mv[0][1][1] - pred_y,
762  s->f_code);
763  } else {
764  av_assert2(s->mv_type == MV_TYPE_8X8);
765  put_bits(&s->pb,
766  ff_h263_inter_MCBPC_bits[cbpc + 16],
767  ff_h263_inter_MCBPC_code[cbpc + 16]);
768  put_bits(pb2, ff_h263_cbpy_tab[cbpy][1], ff_h263_cbpy_tab[cbpy][0]);
769 
770  if (!s->progressive_sequence && cbp)
771  put_bits(pb2, 1, s->interlaced_dct);
772 
773  if (interleaved_stats)
774  s->misc_bits += get_bits_diff(s);
775 
776  for (i = 0; i < 4; i++) {
777  /* motion vectors: 8x8 mode*/
778  ff_h263_pred_motion(s, i, 0, &pred_x, &pred_y);
779 
781  s->current_picture.motion_val[0][s->block_index[i]][0] - pred_x,
782  s->current_picture.motion_val[0][s->block_index[i]][1] - pred_y,
783  s->f_code);
784  }
785  }
786 
787  if (interleaved_stats)
788  s->mv_bits += get_bits_diff(s);
789 
790  mpeg4_encode_blocks(s, block, NULL, NULL, NULL, tex_pb);
791 
792  if (interleaved_stats)
793  s->p_tex_bits += get_bits_diff(s);
794 
795  s->f_count++;
796  }
797  } else {
798  int cbp;
799  int dc_diff[6]; // dc values with the dc prediction subtracted
800  int dir[6]; // prediction direction
801  int zigzag_last_index[6];
802  uint8_t *scan_table[6];
803  int i;
804 
805  for (i = 0; i < 6; i++)
806  dc_diff[i] = ff_mpeg4_pred_dc(s, i, block[i][0], &dir[i], 1);
807 
808  if (s->avctx->flags & AV_CODEC_FLAG_AC_PRED) {
809  s->ac_pred = decide_ac_pred(s, block, dir, scan_table, zigzag_last_index);
810  } else {
811  for (i = 0; i < 6; i++)
812  scan_table[i] = s->intra_scantable.permutated;
813  }
814 
815  /* compute cbp */
816  cbp = 0;
817  for (i = 0; i < 6; i++)
818  if (s->block_last_index[i] >= 1)
819  cbp |= 1 << (5 - i);
820 
821  cbpc = cbp & 3;
822  if (s->pict_type == AV_PICTURE_TYPE_I) {
823  if (s->dquant)
824  cbpc += 4;
825  put_bits(&s->pb,
828  } else {
829  if (s->dquant)
830  cbpc += 8;
831  put_bits(&s->pb, 1, 0); /* mb coded */
832  put_bits(&s->pb,
833  ff_h263_inter_MCBPC_bits[cbpc + 4],
834  ff_h263_inter_MCBPC_code[cbpc + 4]);
835  }
836  put_bits(pb2, 1, s->ac_pred);
837  cbpy = cbp >> 2;
838  put_bits(pb2, ff_h263_cbpy_tab[cbpy][1], ff_h263_cbpy_tab[cbpy][0]);
839  if (s->dquant)
840  put_bits(dc_pb, 2, dquant_code[s->dquant + 2]);
841 
842  if (!s->progressive_sequence)
843  put_bits(dc_pb, 1, s->interlaced_dct);
844 
845  if (interleaved_stats)
846  s->misc_bits += get_bits_diff(s);
847 
848  mpeg4_encode_blocks(s, block, dc_diff, scan_table, dc_pb, tex_pb);
849 
850  if (interleaved_stats)
851  s->i_tex_bits += get_bits_diff(s);
852  s->i_count++;
853 
854  /* restore ac coeffs & last_index stuff
855  * if we messed them up with the prediction */
856  if (s->ac_pred)
857  restore_ac_coeffs(s, block, dir, scan_table, zigzag_last_index);
858  }
859 }
860 
861 /**
862  * add MPEG-4 stuffing bits (01...1)
863  */
865 {
866  int length;
867  put_bits(pbc, 1, 0);
868  length = (-put_bits_count(pbc)) & 7;
869  if (length)
870  put_bits(pbc, length, (1 << length) - 1);
871 }
872 
873 /* must be called before writing the header */
875 {
876  if (s->pict_type == AV_PICTURE_TYPE_B) {
878  } else {
879  s->last_time_base = s->time_base;
880  s->time_base = FFUDIV(s->time, s->avctx->time_base.den);
881  }
882 }
883 
885 {
886  int64_t hours, minutes, seconds;
887  int64_t time;
888 
889  put_bits(&s->pb, 16, 0);
890  put_bits(&s->pb, 16, GOP_STARTCODE);
891 
892  time = s->current_picture_ptr->f->pts;
893  if (s->reordered_input_picture[1])
894  time = FFMIN(time, s->reordered_input_picture[1]->f->pts);
895  time = time * s->avctx->time_base.num;
896  s->last_time_base = FFUDIV(time, s->avctx->time_base.den);
897 
898  seconds = FFUDIV(time, s->avctx->time_base.den);
899  minutes = FFUDIV(seconds, 60); seconds = FFUMOD(seconds, 60);
900  hours = FFUDIV(minutes, 60); minutes = FFUMOD(minutes, 60);
901  hours = FFUMOD(hours , 24);
902 
903  put_bits(&s->pb, 5, hours);
904  put_bits(&s->pb, 6, minutes);
905  put_bits(&s->pb, 1, 1);
906  put_bits(&s->pb, 6, seconds);
907 
908  put_bits(&s->pb, 1, !!(s->avctx->flags & AV_CODEC_FLAG_CLOSED_GOP));
909  put_bits(&s->pb, 1, 0); // broken link == NO
910 
911  ff_mpeg4_stuffing(&s->pb);
912 }
913 
915 {
916  int profile_and_level_indication;
917  int vo_ver_id;
918 
919  if (s->avctx->profile != FF_PROFILE_UNKNOWN) {
920  profile_and_level_indication = s->avctx->profile << 4;
921  } else if (s->max_b_frames || s->quarter_sample) {
922  profile_and_level_indication = 0xF0; // adv simple
923  } else {
924  profile_and_level_indication = 0x00; // simple
925  }
926 
927  if (s->avctx->level != FF_LEVEL_UNKNOWN)
928  profile_and_level_indication |= s->avctx->level;
929  else
930  profile_and_level_indication |= 1; // level 1
931 
932  if (profile_and_level_indication >> 4 == 0xF)
933  vo_ver_id = 5;
934  else
935  vo_ver_id = 1;
936 
937  // FIXME levels
938 
939  put_bits(&s->pb, 16, 0);
940  put_bits(&s->pb, 16, VOS_STARTCODE);
941 
942  put_bits(&s->pb, 8, profile_and_level_indication);
943 
944  put_bits(&s->pb, 16, 0);
945  put_bits(&s->pb, 16, VISUAL_OBJ_STARTCODE);
946 
947  put_bits(&s->pb, 1, 1);
948  put_bits(&s->pb, 4, vo_ver_id);
949  put_bits(&s->pb, 3, 1); // priority
950 
951  put_bits(&s->pb, 4, 1); // visual obj type== video obj
952 
953  put_bits(&s->pb, 1, 0); // video signal type == no clue // FIXME
954 
955  ff_mpeg4_stuffing(&s->pb);
956 }
957 
959  int vo_number,
960  int vol_number)
961 {
962  int vo_ver_id;
963 
964  if (s->max_b_frames || s->quarter_sample) {
965  vo_ver_id = 5;
966  s->vo_type = ADV_SIMPLE_VO_TYPE;
967  } else {
968  vo_ver_id = 1;
969  s->vo_type = SIMPLE_VO_TYPE;
970  }
971 
972  put_bits(&s->pb, 16, 0);
973  put_bits(&s->pb, 16, 0x100 + vo_number); /* video obj */
974  put_bits(&s->pb, 16, 0);
975  put_bits(&s->pb, 16, 0x120 + vol_number); /* video obj layer */
976 
977  put_bits(&s->pb, 1, 0); /* random access vol */
978  put_bits(&s->pb, 8, s->vo_type); /* video obj type indication */
979  if (s->workaround_bugs & FF_BUG_MS) {
980  put_bits(&s->pb, 1, 0); /* is obj layer id= no */
981  } else {
982  put_bits(&s->pb, 1, 1); /* is obj layer id= yes */
983  put_bits(&s->pb, 4, vo_ver_id); /* is obj layer ver id */
984  put_bits(&s->pb, 3, 1); /* is obj layer priority */
985  }
986 
987  s->aspect_ratio_info = ff_h263_aspect_to_info(s->avctx->sample_aspect_ratio);
988 
989  put_bits(&s->pb, 4, s->aspect_ratio_info); /* aspect ratio info */
990  if (s->aspect_ratio_info == FF_ASPECT_EXTENDED) {
991  av_reduce(&s->avctx->sample_aspect_ratio.num, &s->avctx->sample_aspect_ratio.den,
992  s->avctx->sample_aspect_ratio.num, s->avctx->sample_aspect_ratio.den, 255);
993  put_bits(&s->pb, 8, s->avctx->sample_aspect_ratio.num);
994  put_bits(&s->pb, 8, s->avctx->sample_aspect_ratio.den);
995  }
996 
997  if (s->workaround_bugs & FF_BUG_MS) {
998  put_bits(&s->pb, 1, 0); /* vol control parameters= no @@@ */
999  } else {
1000  put_bits(&s->pb, 1, 1); /* vol control parameters= yes */
1001  put_bits(&s->pb, 2, 1); /* chroma format YUV 420/YV12 */
1002  put_bits(&s->pb, 1, s->low_delay);
1003  put_bits(&s->pb, 1, 0); /* vbv parameters= no */
1004  }
1005 
1006  put_bits(&s->pb, 2, RECT_SHAPE); /* vol shape= rectangle */
1007  put_bits(&s->pb, 1, 1); /* marker bit */
1008 
1009  put_bits(&s->pb, 16, s->avctx->time_base.den);
1010  if (s->time_increment_bits < 1)
1011  s->time_increment_bits = 1;
1012  put_bits(&s->pb, 1, 1); /* marker bit */
1013  put_bits(&s->pb, 1, 0); /* fixed vop rate=no */
1014  put_bits(&s->pb, 1, 1); /* marker bit */
1015  put_bits(&s->pb, 13, s->width); /* vol width */
1016  put_bits(&s->pb, 1, 1); /* marker bit */
1017  put_bits(&s->pb, 13, s->height); /* vol height */
1018  put_bits(&s->pb, 1, 1); /* marker bit */
1019  put_bits(&s->pb, 1, s->progressive_sequence ? 0 : 1);
1020  put_bits(&s->pb, 1, 1); /* obmc disable */
1021  if (vo_ver_id == 1)
1022  put_bits(&s->pb, 1, 0); /* sprite enable */
1023  else
1024  put_bits(&s->pb, 2, 0); /* sprite enable */
1025 
1026  put_bits(&s->pb, 1, 0); /* not 8 bit == false */
1027  put_bits(&s->pb, 1, s->mpeg_quant); /* quant type = (0 = H.263 style) */
1028 
1029  if (s->mpeg_quant) {
1030  ff_write_quant_matrix(&s->pb, s->avctx->intra_matrix);
1031  ff_write_quant_matrix(&s->pb, s->avctx->inter_matrix);
1032  }
1033 
1034  if (vo_ver_id != 1)
1035  put_bits(&s->pb, 1, s->quarter_sample);
1036  put_bits(&s->pb, 1, 1); /* complexity estimation disable */
1037  put_bits(&s->pb, 1, s->rtp_mode ? 0 : 1); /* resync marker disable */
1038  put_bits(&s->pb, 1, s->data_partitioning ? 1 : 0);
1039  if (s->data_partitioning)
1040  put_bits(&s->pb, 1, 0); /* no rvlc */
1041 
1042  if (vo_ver_id != 1) {
1043  put_bits(&s->pb, 1, 0); /* newpred */
1044  put_bits(&s->pb, 1, 0); /* reduced res vop */
1045  }
1046  put_bits(&s->pb, 1, 0); /* scalability */
1047 
1048  ff_mpeg4_stuffing(&s->pb);
1049 
1050  /* user data */
1051  if (!(s->avctx->flags & AV_CODEC_FLAG_BITEXACT)) {
1052  put_bits(&s->pb, 16, 0);
1053  put_bits(&s->pb, 16, 0x1B2); /* user_data */
1054  ff_put_string(&s->pb, LIBAVCODEC_IDENT, 0);
1055  }
1056 }
1057 
1058 /* write MPEG-4 VOP header */
1060 {
1061  uint64_t time_incr;
1062  int64_t time_div, time_mod;
1063 
1064  if (s->pict_type == AV_PICTURE_TYPE_I) {
1065  if (!(s->avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER)) {
1066  if (s->strict_std_compliance < FF_COMPLIANCE_VERY_STRICT) // HACK, the reference sw is buggy
1068  if (s->strict_std_compliance < FF_COMPLIANCE_VERY_STRICT || picture_number == 0) // HACK, the reference sw is buggy
1069  mpeg4_encode_vol_header(s, 0, 0);
1070  }
1071  if (!(s->workaround_bugs & FF_BUG_MS))
1073  }
1074 
1075  s->partitioned_frame = s->data_partitioning && s->pict_type != AV_PICTURE_TYPE_B;
1076 
1077  put_bits(&s->pb, 16, 0); /* vop header */
1078  put_bits(&s->pb, 16, VOP_STARTCODE); /* vop header */
1079  put_bits(&s->pb, 2, s->pict_type - 1); /* pict type: I = 0 , P = 1 */
1080 
1081  time_div = FFUDIV(s->time, s->avctx->time_base.den);
1082  time_mod = FFUMOD(s->time, s->avctx->time_base.den);
1083  time_incr = time_div - s->last_time_base;
1084 
1085  // This limits the frame duration to max 1 hour
1086  if (time_incr > 3600) {
1087  av_log(s->avctx, AV_LOG_ERROR, "time_incr %"PRIu64" too large\n", time_incr);
1088  return AVERROR(EINVAL);
1089  }
1090  while (time_incr--)
1091  put_bits(&s->pb, 1, 1);
1092 
1093  put_bits(&s->pb, 1, 0);
1094 
1095  put_bits(&s->pb, 1, 1); /* marker */
1096  put_bits(&s->pb, s->time_increment_bits, time_mod); /* time increment */
1097  put_bits(&s->pb, 1, 1); /* marker */
1098  put_bits(&s->pb, 1, 1); /* vop coded */
1099  if (s->pict_type == AV_PICTURE_TYPE_P) {
1100  put_bits(&s->pb, 1, s->no_rounding); /* rounding type */
1101  }
1102  put_bits(&s->pb, 3, 0); /* intra dc VLC threshold */
1103  if (!s->progressive_sequence) {
1104  put_bits(&s->pb, 1, s->current_picture_ptr->f->top_field_first);
1105  put_bits(&s->pb, 1, s->alternate_scan);
1106  }
1107  // FIXME sprite stuff
1108 
1109  put_bits(&s->pb, 5, s->qscale);
1110 
1111  if (s->pict_type != AV_PICTURE_TYPE_I)
1112  put_bits(&s->pb, 3, s->f_code); /* fcode_for */
1113  if (s->pict_type == AV_PICTURE_TYPE_B)
1114  put_bits(&s->pb, 3, s->b_code); /* fcode_back */
1115 
1116  return 0;
1117 }
1118 
1119 static av_cold void init_uni_dc_tab(void)
1120 {
1121  int level, uni_code, uni_len;
1122 
1123  for (level = -256; level < 256; level++) {
1124  int size, v, l;
1125  /* find number of bits */
1126  size = 0;
1127  v = abs(level);
1128  while (v) {
1129  v >>= 1;
1130  size++;
1131  }
1132 
1133  if (level < 0)
1134  l = (-level) ^ ((1 << size) - 1);
1135  else
1136  l = level;
1137 
1138  /* luminance */
1139  uni_code = ff_mpeg4_DCtab_lum[size][0];
1140  uni_len = ff_mpeg4_DCtab_lum[size][1];
1141 
1142  if (size > 0) {
1143  uni_code <<= size;
1144  uni_code |= l;
1145  uni_len += size;
1146  if (size > 8) {
1147  uni_code <<= 1;
1148  uni_code |= 1;
1149  uni_len++;
1150  }
1151  }
1152  uni_DCtab_lum_bits[level + 256] = uni_code;
1153  uni_DCtab_lum_len[level + 256] = uni_len;
1154 
1155  /* chrominance */
1156  uni_code = ff_mpeg4_DCtab_chrom[size][0];
1157  uni_len = ff_mpeg4_DCtab_chrom[size][1];
1158 
1159  if (size > 0) {
1160  uni_code <<= size;
1161  uni_code |= l;
1162  uni_len += size;
1163  if (size > 8) {
1164  uni_code <<= 1;
1165  uni_code |= 1;
1166  uni_len++;
1167  }
1168  }
1169  uni_DCtab_chrom_bits[level + 256] = uni_code;
1170  uni_DCtab_chrom_len[level + 256] = uni_len;
1171  }
1172 }
1173 
1174 static av_cold void init_uni_mpeg4_rl_tab(RLTable *rl, uint32_t *bits_tab,
1175  uint8_t *len_tab)
1176 {
1177  int slevel, run, last;
1178 
1179  av_assert0(MAX_LEVEL >= 64);
1180  av_assert0(MAX_RUN >= 63);
1181 
1182  for (slevel = -64; slevel < 64; slevel++) {
1183  if (slevel == 0)
1184  continue;
1185  for (run = 0; run < 64; run++) {
1186  for (last = 0; last <= 1; last++) {
1187  const int index = UNI_MPEG4_ENC_INDEX(last, run, slevel + 64);
1188  int level = slevel < 0 ? -slevel : slevel;
1189  int sign = slevel < 0 ? 1 : 0;
1190  int bits, len, code;
1191  int level1, run1;
1192 
1193  len_tab[index] = 100;
1194 
1195  /* ESC0 */
1196  code = get_rl_index(rl, last, run, level);
1197  bits = rl->table_vlc[code][0];
1198  len = rl->table_vlc[code][1];
1199  bits = bits * 2 + sign;
1200  len++;
1201 
1202  if (code != rl->n && len < len_tab[index]) {
1203  bits_tab[index] = bits;
1204  len_tab[index] = len;
1205  }
1206  /* ESC1 */
1207  bits = rl->table_vlc[rl->n][0];
1208  len = rl->table_vlc[rl->n][1];
1209  bits = bits * 2;
1210  len++; // esc1
1211  level1 = level - rl->max_level[last][run];
1212  if (level1 > 0) {
1213  code = get_rl_index(rl, last, run, level1);
1214  bits <<= rl->table_vlc[code][1];
1215  len += rl->table_vlc[code][1];
1216  bits += rl->table_vlc[code][0];
1217  bits = bits * 2 + sign;
1218  len++;
1219 
1220  if (code != rl->n && len < len_tab[index]) {
1221  bits_tab[index] = bits;
1222  len_tab[index] = len;
1223  }
1224  }
1225  /* ESC2 */
1226  bits = rl->table_vlc[rl->n][0];
1227  len = rl->table_vlc[rl->n][1];
1228  bits = bits * 4 + 2;
1229  len += 2; // esc2
1230  run1 = run - rl->max_run[last][level] - 1;
1231  if (run1 >= 0) {
1232  code = get_rl_index(rl, last, run1, level);
1233  bits <<= rl->table_vlc[code][1];
1234  len += rl->table_vlc[code][1];
1235  bits += rl->table_vlc[code][0];
1236  bits = bits * 2 + sign;
1237  len++;
1238 
1239  if (code != rl->n && len < len_tab[index]) {
1240  bits_tab[index] = bits;
1241  len_tab[index] = len;
1242  }
1243  }
1244  /* ESC3 */
1245  bits = rl->table_vlc[rl->n][0];
1246  len = rl->table_vlc[rl->n][1];
1247  bits = bits * 4 + 3;
1248  len += 2; // esc3
1249  bits = bits * 2 + last;
1250  len++;
1251  bits = bits * 64 + run;
1252  len += 6;
1253  bits = bits * 2 + 1;
1254  len++; // marker
1255  bits = bits * 4096 + (slevel & 0xfff);
1256  len += 12;
1257  bits = bits * 2 + 1;
1258  len++; // marker
1259 
1260  if (len < len_tab[index]) {
1261  bits_tab[index] = bits;
1262  len_tab[index] = len;
1263  }
1264  }
1265  }
1266  }
1267 }
1268 
1270 {
1271  MpegEncContext *s = avctx->priv_data;
1272  int ret;
1273  static int done = 0;
1274 
1275  if (avctx->width >= (1<<13) || avctx->height >= (1<<13)) {
1276  av_log(avctx, AV_LOG_ERROR, "dimensions too large for MPEG-4\n");
1277  return AVERROR(EINVAL);
1278  }
1279 
1280  if ((ret = ff_mpv_encode_init(avctx)) < 0)
1281  return ret;
1282 
1283  if (!done) {
1284  done = 1;
1285 
1286  init_uni_dc_tab();
1287 
1289 
1292  }
1293 
1294  s->min_qcoeff = -2048;
1295  s->max_qcoeff = 2047;
1296  s->intra_ac_vlc_length = uni_mpeg4_intra_rl_len;
1297  s->intra_ac_vlc_last_length = uni_mpeg4_intra_rl_len + 128 * 64;
1298  s->inter_ac_vlc_length = uni_mpeg4_inter_rl_len;
1299  s->inter_ac_vlc_last_length = uni_mpeg4_inter_rl_len + 128 * 64;
1300  s->luma_dc_vlc_length = uni_DCtab_lum_len;
1301  s->ac_esc_length = 7 + 2 + 1 + 6 + 1 + 12 + 1;
1302  s->y_dc_scale_table = ff_mpeg4_y_dc_scale_table;
1303  s->c_dc_scale_table = ff_mpeg4_c_dc_scale_table;
1304 
1305  if (s->avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) {
1306  s->avctx->extradata = av_malloc(1024);
1307  if (!s->avctx->extradata)
1308  return AVERROR(ENOMEM);
1309  init_put_bits(&s->pb, s->avctx->extradata, 1024);
1310 
1311  if (!(s->workaround_bugs & FF_BUG_MS))
1313  mpeg4_encode_vol_header(s, 0, 0);
1314 
1315 // ff_mpeg4_stuffing(&s->pb); ?
1316  flush_put_bits(&s->pb);
1317  s->avctx->extradata_size = (put_bits_count(&s->pb) + 7) >> 3;
1318  }
1319  return 0;
1320 }
1321 
1323 {
1324  uint8_t *start = put_bits_ptr(&s->pb);
1325  uint8_t *end = s->pb.buf_end;
1326  int size = end - start;
1327  int pb_size = (((intptr_t)start + size / 3) & (~3)) - (intptr_t)start;
1328  int tex_size = (size - 2 * pb_size) & (~3);
1329 
1330  set_put_bits_buffer_size(&s->pb, pb_size);
1331  init_put_bits(&s->tex_pb, start + pb_size, tex_size);
1332  init_put_bits(&s->pb2, start + pb_size + tex_size, pb_size);
1333 }
1334 
1336 {
1337  const int pb2_len = put_bits_count(&s->pb2);
1338  const int tex_pb_len = put_bits_count(&s->tex_pb);
1339  const int bits = put_bits_count(&s->pb);
1340 
1341  if (s->pict_type == AV_PICTURE_TYPE_I) {
1342  put_bits(&s->pb, 19, DC_MARKER);
1343  s->misc_bits += 19 + pb2_len + bits - s->last_bits;
1344  s->i_tex_bits += tex_pb_len;
1345  } else {
1346  put_bits(&s->pb, 17, MOTION_MARKER);
1347  s->misc_bits += 17 + pb2_len;
1348  s->mv_bits += bits - s->last_bits;
1349  s->p_tex_bits += tex_pb_len;
1350  }
1351 
1352  flush_put_bits(&s->pb2);
1353  flush_put_bits(&s->tex_pb);
1354 
1355  set_put_bits_buffer_size(&s->pb, s->pb2.buf_end - s->pb.buf);
1356  ff_copy_bits(&s->pb, s->pb2.buf, pb2_len);
1357  ff_copy_bits(&s->pb, s->tex_pb.buf, tex_pb_len);
1358  s->last_bits = put_bits_count(&s->pb);
1359 }
1360 
1362 {
1363  int mb_num_bits = av_log2(s->mb_num - 1) + 1;
1364 
1366  put_bits(&s->pb, 1, 1);
1367 
1368  put_bits(&s->pb, mb_num_bits, s->mb_x + s->mb_y * s->mb_width);
1369  put_bits(&s->pb, s->quant_precision, s->qscale);
1370  put_bits(&s->pb, 1, 0); /* no HEC */
1371 }
1372 
1373 #define OFFSET(x) offsetof(MpegEncContext, x)
1374 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1375 static const AVOption options[] = {
1376  { "data_partitioning", "Use data partitioning.", OFFSET(data_partitioning), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
1377  { "alternate_scan", "Enable alternate scantable.", OFFSET(alternate_scan), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
1380  { NULL },
1381 };
1382 
1383 static const AVClass mpeg4enc_class = {
1384  .class_name = "MPEG4 encoder",
1385  .item_name = av_default_item_name,
1386  .option = options,
1387  .version = LIBAVUTIL_VERSION_INT,
1388 };
1389 
1391  .name = "mpeg4",
1392  .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 part 2"),
1393  .type = AVMEDIA_TYPE_VIDEO,
1394  .id = AV_CODEC_ID_MPEG4,
1395  .priv_data_size = sizeof(MpegEncContext),
1396  .init = encode_init,
1397  .encode2 = ff_mpv_encode_picture,
1398  .close = ff_mpv_encode_end,
1401  .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
1402  .priv_class = &mpeg4enc_class,
1403 };
Macro definitions for various function/variable attributes.
#define av_cold
Definition: attributes.h:88
uint8_t
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:64
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
#define FF_PROFILE_UNKNOWN
Definition: avcodec.h:1859
#define FF_BUG_MS
Work around various bugs in Microsoft's broken decoders.
Definition: avcodec.h:1585
#define FF_LEVEL_UNKNOWN
Definition: avcodec.h:1985
#define FF_COMPLIANCE_VERY_STRICT
Strictly conform to an older more strict version of the spec or reference software.
Definition: avcodec.h:1602
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:31
void ff_copy_bits(PutBitContext *pb, const uint8_t *src, int length)
Copy the content of src to the bitstream.
Definition: bitstream.c:69
void ff_put_string(PutBitContext *pb, const char *string, int terminate_string)
Put the string string in the bitstream.
Definition: bitstream.c:59
#define s(width, name)
Definition: cbs_vp9.c:257
#define FFMIN(a, b)
Definition: common.h:105
#define FFUDIV(a, b)
Definition: common.h:63
#define ROUNDED_DIV(a, b)
Definition: common.h:56
#define FFUMOD(a, b)
Definition: common.h:64
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define NULL
Definition: coverity.c:32
long long int64_t
Definition: coverity.c:34
#define abs(x)
Definition: cuda_runtime.h:35
@ AV_OPT_TYPE_BOOL
Definition: opt.h:242
#define AV_CODEC_FLAG_BITEXACT
Use only bitexact stuff (except (I)DCT).
Definition: avcodec.h:333
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
Definition: codec.h:77
#define AV_CODEC_FLAG_CLOSED_GOP
Definition: avcodec.h:343
#define AV_CODEC_FLAG_AC_PRED
H.263 advanced intra coding / MPEG-4 AC prediction.
Definition: avcodec.h:338
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
Definition: codec.h:112
#define AV_CODEC_FLAG_PASS1
Use internal 2pass ratecontrol in first pass mode.
Definition: avcodec.h:296
#define AV_CODEC_FLAG_GLOBAL_HEADER
Place global headers in extradata instead of every keyframe.
Definition: avcodec.h:329
#define AV_CODEC_FLAG2_NO_OUTPUT
Skip bitstream encoding.
Definition: avcodec.h:352
@ AV_CODEC_ID_MPEG4
Definition: codec_id.h:61
#define FF_LAMBDA_SHIFT
Definition: avutil.h:225
#define AVERROR(e)
Definition: error.h:43
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:235
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
Definition: rational.c:35
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:201
@ AV_PICTURE_TYPE_I
Intra.
Definition: avutil.h:274
@ AV_PICTURE_TYPE_P
Predicted.
Definition: avutil.h:275
@ AV_PICTURE_TYPE_B
Bi-dir predicted.
Definition: avutil.h:276
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
int index
Definition: gxfenc.c:89
int16_t * ff_h263_pred_motion(MpegEncContext *s, int block, int dir, int *px, int *py)
Definition: h263.c:319
void ff_clean_h263_qscales(MpegEncContext *s)
modify qscale so that encoding is actually possible in H.263 (limit difference to -2....
Definition: ituh263enc.c:266
#define FF_ASPECT_EXTENDED
Definition: h263.h:30
static void ff_h263_encode_motion_vector(MpegEncContext *s, int x, int y, int f_code)
Definition: h263.h:120
av_const int ff_h263_aspect_to_info(AVRational aspect)
Return the 4 bit value that specifies the given aspect ratio.
Definition: ituh263enc.c:89
static int get_p_cbp(MpegEncContext *s, int16_t block[6][64], int motion_x, int motion_y)
Definition: h263.h:131
RLTable ff_h263_rl_inter
Definition: h263data.c:159
const uint8_t ff_h263_intra_MCBPC_bits[9]
Definition: h263data.c:33
const uint8_t ff_h263_inter_MCBPC_code[28]
Definition: h263data.c:38
const uint8_t ff_h263_inter_MCBPC_bits[28]
Definition: h263data.c:47
const uint8_t ff_h263_intra_MCBPC_code[9]
Definition: h263data.c:32
const uint8_t ff_h263_cbpy_tab[16][2]
Definition: h263data.c:82
int i
Definition: input.c:407
#define av_log2
Definition: intmath.h:83
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
Definition: j2kenc.c:218
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: internal.h:49
#define LIBAVCODEC_IDENT
Definition: version.h:42
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:117
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:309
const uint8_t ff_mpeg4_DCtab_lum[13][2]
Definition: mpeg4data.h:35
RLTable ff_mpeg4_rl_intra
Definition: mpeg4data.h:109
const uint8_t ff_mpeg4_c_dc_scale_table[32]
Definition: mpeg4data.h:361
const uint8_t ff_mpeg4_y_dc_scale_table[32]
Definition: mpeg4data.h:357
const uint8_t ff_mpeg4_DCtab_chrom[13][2]
Definition: mpeg4data.h:41
int ff_mpeg4_get_video_packet_prefix_length(MpegEncContext *s)
Definition: mpeg4video.c:30
void ff_mpeg4_init_direct_mv(MpegEncContext *s)
Definition: mpeg4video.c:71
uint8_t ff_mpeg4_static_rl_table_store[3][2][2 *MAX_RUN+MAX_LEVEL+3]
Definition: mpeg4video.c:28
#define ADV_SIMPLE_VO_TYPE
Definition: mpeg4video.h:46
#define SIMPLE_VO_TYPE
Definition: mpeg4video.h:38
#define DC_MARKER
Definition: mpeg4video.h:59
#define MOTION_MARKER
Definition: mpeg4video.h:58
#define RECT_SHAPE
Definition: mpeg4video.h:33
#define VOS_STARTCODE
Definition: mpeg4video.h:61
#define VOP_STARTCODE
Definition: mpeg4video.h:65
static int ff_mpeg4_pred_dc(MpegEncContext *s, int n, int level, int *dir_ptr, int encoding)
Predict the dc.
Definition: mpeg4video.h:198
#define GOP_STARTCODE
Definition: mpeg4video.h:63
#define VISUAL_OBJ_STARTCODE
Definition: mpeg4video.h:64
static int mpeg4_get_block_length(MpegEncContext *s, int16_t *block, int n, int intra_dc, uint8_t *scan_table)
static void mpeg4_encode_block(MpegEncContext *s, int16_t *block, int n, int intra_dc, uint8_t *scan_table, PutBitContext *dc_pb, PutBitContext *ac_pb)
Encode an 8x8 block.
void ff_mpeg4_stuffing(PutBitContext *pbc)
add MPEG-4 stuffing bits (01...1)
void ff_mpeg4_merge_partitions(MpegEncContext *s)
static void mpeg4_encode_gop_header(MpegEncContext *s)
static uint8_t uni_DCtab_lum_len[512]
Definition: mpeg4videoenc.c:35
static const AVClass mpeg4enc_class
static uint16_t uni_DCtab_chrom_bits[512]
Definition: mpeg4videoenc.c:38
static uint8_t uni_mpeg4_intra_rl_len[64 *64 *2 *2]
Definition: mpeg4videoenc.c:43
static const AVOption options[]
void ff_clean_mpeg4_qscales(MpegEncContext *s)
modify mb_type & qscale so that encoding is actually possible in MPEG-4
#define VE
static av_cold void init_uni_dc_tab(void)
static void mpeg4_encode_dc(PutBitContext *s, int level, int n)
Encode the dc value.
static uint16_t uni_DCtab_lum_bits[512]
Definition: mpeg4videoenc.c:37
static av_cold int encode_init(AVCodecContext *avctx)
static void restore_ac_coeffs(MpegEncContext *s, int16_t block[6][64], const int dir[6], uint8_t *st[6], const int zigzag_last_index[6])
Restore the ac coefficients in block that have been changed by decide_ac_pred().
static void mpeg4_encode_blocks(MpegEncContext *s, int16_t block[6][64], int intra_dc[6], uint8_t **scan_table, PutBitContext *dc_pb, PutBitContext *ac_pb)
static void mpeg4_encode_visual_object_header(MpegEncContext *s)
static int decide_ac_pred(MpegEncContext *s, int16_t block[6][64], const int dir[6], uint8_t *st[6], int zigzag_last_index[6])
Return the optimal value (0 or 1) for the ac_pred element for the given MB in MPEG-4.
#define UNI_MPEG4_ENC_INDEX(last, run, level)
Definition: mpeg4videoenc.c:49
static uint32_t uni_mpeg4_inter_rl_bits[64 *64 *2 *2]
Definition: mpeg4videoenc.c:44
int ff_mpeg4_encode_picture_header(MpegEncContext *s, int picture_number)
static const int dquant_code[5]
static int get_b_cbp(MpegEncContext *s, int16_t block[6][64], int motion_x, int motion_y, int mb_type)
static uint32_t uni_mpeg4_intra_rl_bits[64 *64 *2 *2]
Definition: mpeg4videoenc.c:42
static int mpeg4_get_dc_length(int level, int n)
#define OFFSET(x)
AVCodec ff_mpeg4_encoder
void ff_mpeg4_encode_video_packet_header(MpegEncContext *s)
static void mpeg4_encode_vol_header(MpegEncContext *s, int vo_number, int vol_number)
static uint8_t uni_mpeg4_inter_rl_len[64 *64 *2 *2]
Definition: mpeg4videoenc.c:45
void ff_mpeg4_encode_mb(MpegEncContext *s, int16_t block[6][64], int motion_x, int motion_y)
static av_cold void init_uni_mpeg4_rl_tab(RLTable *rl, uint32_t *bits_tab, uint8_t *len_tab)
void ff_set_mpeg4_time(MpegEncContext *s)
static int get_block_rate(MpegEncContext *s, int16_t block[64], int block_last_index, uint8_t scantable[64])
Return the number of bits that encoding the 8x8 block in block would need.
Definition: mpeg4videoenc.c:65
void ff_mpeg4_init_partitions(MpegEncContext *s)
static uint8_t uni_DCtab_chrom_len[512]
Definition: mpeg4videoenc.c:36
#define CANDIDATE_MB_TYPE_DIRECT
Definition: mpegutils.h:109
#define CANDIDATE_MB_TYPE_BIDIR
Definition: mpegutils.h:112
#define INPLACE_OFFSET
Definition: mpegutils.h:121
mpegvideo header.
#define FF_MPV_FLAG_CBP_RD
Definition: mpegvideo.h:596
int ff_mpv_encode_end(AVCodecContext *avctx)
#define MV_DIR_BACKWARD
Definition: mpegvideo.h:263
int ff_mpv_encode_picture(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame, int *got_packet)
static int get_bits_diff(MpegEncContext *s)
Definition: mpegvideo.h:765
#define MV_DIR_FORWARD
Definition: mpegvideo.h:262
#define MV_TYPE_FIELD
2 vectors, one per field
Definition: mpegvideo.h:269
#define MV_TYPE_8X8
4 vectors (H.263, MPEG-4 4MV)
Definition: mpegvideo.h:267
#define UNI_AC_ENC_INDEX(run, level)
Definition: mpegvideo.h:318
void ff_write_quant_matrix(PutBitContext *pb, uint16_t *matrix)
#define FF_MPV_COMMON_OPTS
Definition: mpegvideo.h:629
#define MV_DIRECT
bidirectional mode where the difference equals the MV of the last P/S/I-Frame (MPEG-4)
Definition: mpegvideo.h:264
#define MV_TYPE_16X16
1 vector for the whole mb
Definition: mpegvideo.h:266
int ff_mpv_encode_init(AVCodecContext *avctx)
AVOptions.
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
@ AV_PIX_FMT_NONE
Definition: pixfmt.h:65
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
#define FF_MPEG4_PROFILE_OPTS
Definition: profiles.h:40
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
Definition: put_bits.h:57
static void set_put_bits_buffer_size(PutBitContext *s, int size)
Change the end of the buffer.
Definition: put_bits.h:376
static void skip_put_bits(PutBitContext *s, int n)
Skip the given number of bits.
Definition: put_bits.h:364
static uint8_t * put_bits_ptr(PutBitContext *s)
Return the pointer to the byte where the bitstream writer will put the next bit.
Definition: put_bits.h:342
static int put_bits_count(PutBitContext *s)
Definition: put_bits.h:76
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
Definition: put_bits.h:110
av_cold void ff_rl_init(RLTable *rl, uint8_t static_store[2][2 *MAX_RUN+MAX_LEVEL+3])
Definition: rl.c:28
#define MAX_LEVEL
Definition: rl.h:36
#define MAX_RUN
Definition: rl.h:35
static int get_rl_index(const RLTable *rl, int last, int run, int level)
Definition: rl.h:79
const uint8_t * code
Definition: spdifenc.c:413
Describe the class of an AVClass context structure.
Definition: log.h:67
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:72
main external API structure.
Definition: avcodec.h:536
int width
picture width / height.
Definition: avcodec.h:709
void * priv_data
Definition: avcodec.h:563
AVCodec.
Definition: codec.h:197
const char * name
Name of the codec implementation.
Definition: codec.h:204
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:332
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:401
AVOption.
Definition: opt.h:248
MpegEncContext.
Definition: mpegvideo.h:81
Picture.
Definition: mpegpicture.h:45
int shared
Definition: mpegpicture.h:89
struct AVFrame * f
Definition: mpegpicture.h:46
RLTable.
Definition: rl.h:39
int n
number of entries of table_vlc minus 1
Definition: rl.h:40
int8_t * max_run[2]
encoding & decoding
Definition: rl.h:47
const uint16_t(* table_vlc)[2]
Definition: rl.h:42
int8_t * max_level[2]
encoding & decoding
Definition: rl.h:46
uint8_t run
Definition: svq3.c:205
uint8_t level
Definition: svq3.c:206
#define av_malloc(s)
#define av_log(a,...)
static int16_t block[64]
Definition: dct.c:116
int size
if(ret< 0)
Definition: vf_mcdeint.c:282
static av_always_inline int diff(const uint32_t a, const uint32_t b)
static const uint8_t offset[127][2]
Definition: vf_spp.c:107
int len
uint8_t bits
Definition: vp3data.h:141